/ / Kas ir neatņemams un kāda ir tā fiziskā nozīme

Kas ir neatņemama un kāda ir tā fiziskā nozīme

Integrālās jēdziena izskats bija saistīts arnepieciešamība atrast primitīvu funkciju tā atvasinājuma, un noteikt vērtību darba zonas sarežģītas formas, nobraukums attālumu, ar parametriem, kas izklāstītas lokus, nelineāru vienādojumu.

No kursa

Kāda ir neatņemama sastāvdaļa?
un fiziķi zina, ka darbs ir vienāds ar produktuspēks attālumā. Ja viss kustības notiek pastāvīgā ātrumā vai attālums tiek pārvarēts, pielietojot to pašu spēku, tad viss ir skaidrs, jūs tos vienkārši pavairot. Kāda ir konstanta sastāvdaļa? Šī ir formas y = kx + c lineārā funkcija.

Bet spēks var mainīties darba gaitā un kaut kādā dabiskā atkarībā. Tā pati situācija rodas, aprēķinot nodarīto attālumu, ja ātrums nav nemainīgs.

Tātad, ir skaidrs, kas ir neatņemams. Nosakot to kā funkciju vērtību produktu summu ar neierobežotu argumenta pieaugumu, pilnībā tiek aprakstīta šī jēdziena galvenā nozīme kā skaitļa laukums, ko no augšas apzīmē ar funkciju līniju, un pa malām - ar definīcijas robežām.

Jean Gaston Darboux, franču matemātiķis, inXIX gadsimta otrā puse ļoti skaidri izskaidroja, kas ir neatņemams. Viņš to darīja tik skaidri, ka kopumā, pat ja jaunākais vidusskolas skolēns to izprot, tas nav grūti.

Integrāla definīcija

Pieņemsim, ka funkcija ir jebkura sarežģīta forma. y-ass, uz kuras tiek deponēts vērtību argumentu, tiek sadalīta mazos intervālos, ideālā gadījumā, tie ir bezgalīgi maza, bet tāpēc, ka jēdziens bezgalībai ir diezgan abstrakts, tas ir pietiekami, lai iedomāties tikai mazos gabaliņos, kuras apmērs parasti apzīmē ar grieķu burtu Δ ​​(delta).

Funkcija tika "sagriezta" mazos ķieģeļos.

Katrai argumenta vērtībai atbilst punktamordinātu koordinātas, uz kurām tiek attēlotas atbilstošās funkcijas vērtības. Bet, tā kā atlasītās sadaļas robežas ir divas, tad funkciju vērtības būs divas, lielākas un mazākas.

Lielu vērtību produktu summapieaugums Δ sauc Darboux daudz, un tiek saukta par S. Tāpēc mazākie vērtības ierobežotā apgabalā, kas reizināts ar Δ, kopā veido nelielu daudzumu Darboux s. Vieta pati par sevi atgādina taisnstūrveida trapecveida, tā kā funkciju no izliekuma līnijas dēļ bezgalīgi pieaugumu to var neņemt vērā. Vieglākais veids, kā atrast platība ģeometriskās formas - salocīta gabalu lielākām un mazākām vērtībām funkciju uz Δ-pieaugumu un dalīt ar divi, kas tiek definēts kā vidējo aritmētisko.

Tas ir Darboux integrālis:

s = Σf (x) Δ ir maza summa;

S = Σf (x + Δ) Δ ir liela summa.

Tātad, kas ir neatņemams aspekts? Platība, ko ierobežo funkciju līnija un definīcijas robežas, būs:

Integrālā fiziskā nozīme

∫f (x) dx = {(S + s) / 2} + c

Tas nozīmē, ka lielo un mazo Darboux summu vidējais aritmētiskais ir nemainīga vērtība, kas tiek atcelta ar diferenciāciju.

Ņemot vērā šī ģeometrisko izteiksmijēdziens kļūst skaidrs, ka integrāļa fiziskā nozīme. Cilvēka laukums, ko raksturo ātruma funkcija un ko ierobežo laika intervāls pa abscisu, būs šķērsoto ceļu garums.

L = ∫f (x) dx intervālā no t1 līdz t2,

Kur

f (x) ir ātruma funkcija, ti, formula, ar kuru tā laika gaitā mainās;

L ir ceļa garums;

t1 - ceļa sākuma laiks;

t2 ir ceļa beigu laiks.

Tieši tas pats princips nosaka darba apjomu, bet tiks deponēts uz abscisas attālums un koordinēt - summa spēks katrā atsevišķā punktā.

Lasīt vairāk: